Performance Comparison of 10 State-of-the-Art Machine Learning Algorithms for Outcome Prediction Modeling of Radiation-Induced Toxicity

Purpose: To evaluate the efficacy of prominent machine learning algorithms in predicting normal tissue complication probability using clinical data obtained from 2 distinct disease sites and to create a software tool that facilitates the automatic determination of the optimal algorithm to model any...

Full description

Saved in:
Bibliographic Details
Main Authors: Ramon M. Salazar, PhD, Saurabh S. Nair, MS, Alexandra O. Leone, MBS, Ting Xu, PhD, Raymond P. Mumme, BS, Jack D. Duryea, BA, Brian De, MD, Kelsey L. Corrigan, MD, Michael K. Rooney, MD, Matthew S. Ning, MD, Prajnan Das, MD, Emma B. Holliday, MD, Zhongxing Liao, MD, Laurence E. Court, PhD, Joshua S. Niedzielski, PhD
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Advances in Radiation Oncology
Online Access:http://www.sciencedirect.com/science/article/pii/S2452109424002380
Tags: Add Tag
No Tags, Be the first to tag this record!