Optimal Design and Operation of an Ultrasonic Driving System for Algae Removal Considering Underwater Environment Load

This study investigates the optimal design and operation of an underwater ultrasonic system for algae removal, focusing on the electromechanical load of Langevin-type piezoelectric transducers. These piezoelectric transducers, which operate in underwater environments, exhibit variations in electrica...

Full description

Saved in:
Bibliographic Details
Main Authors: Changdae Joo, Taekue Kim
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/2/542
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the optimal design and operation of an underwater ultrasonic system for algae removal, focusing on the electromechanical load of Langevin-type piezoelectric transducers. These piezoelectric transducers, which operate in underwater environments, exhibit variations in electrical–mechanical impedance due to practical environmental factors, such as waterproof molding structures or variations in pressure and flow rates depending on the water depth. To address these challenges, we modeled the underwater load conditions using the finite element method and analyzed the impedance characteristics of the piezoelectric transducer under realistic environmental conditions. Based on this analysis, we developed an ultrasound-driven system capable of efficient output control by incorporating the impedance characteristics of the transducer under load variations and subaquatic conditions. This study proposes analytical and experimental methods for modeling and analyzing practical ultrasound-driven systems for algae removal.
ISSN:1424-8220