Variable Selection for Multivariate Failure Time Data via Regularized Sparse-Input Neural Network
This study addresses the problem of simultaneous variable selection and model estimation in multivariate failure time data, a common challenge in clinical trials with multiple correlated time-to-event endpoints. We propose a unified framework that identifies predictors shared across outcomes, applic...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Bioengineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2306-5354/12/6/596 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|