Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience

Researchers are increasingly using machine learning to study physiological markers of emotion. We evaluated the promises and limitations of this approach via a big team science competition. Twelve teams competed to predict self-reported affective experiences using a multi-modal set of peripheral ner...

Full description

Saved in:
Bibliographic Details
Main Authors: Nicholas A. Coles, Bartosz Perz, Maciej Behnke, Johannes C. Eichstaedt, Soo Hyung Kim, Tu N. Vu, Chirag Raman, Julian Tejada, Van-Thong Huynh, Guangyi Zhang, Tanming Cui, Sharanyak Podder, Rushi Chavda, Shubham Pandey, Arpit Upadhyay, Jorge I. Padilla-Buritica, Carlos J. Barrera Causil, Linying Ji, Felix Dollack, Kiyoshi Kiyokawa, Huakun Liu, Monica Perusquia-Hernandez, Hideaki Uchiyama, Xin Wei, Houwei Cao, Ziqing Yang, Alessia Iancarelli, Kieran McVeigh, Yiyu Wang, Isabel M. Berwian, Jamie C. Chiu, Dan-Mircea Mirea, Erik C. Nook, Henna I. Vartiainen, Claire Whiting, Young Won Cho, Sy-Miin Chow, Zachary F. Fisher, Yanling Li, Xiaoyue Xiong, Yuqi Shen, Enzo Tagliazucchi, Leandro A. Bugnon, Raydonal Ospina, Nicolas M. Bruno, Tomas A. D'Amelio, Federico Zamberlan, Luis R. Mercado Diaz, Javier O. Pinzon-Arenas, Hugo F. Posada-Quintero, Maneesh Bilalpur, Saurabh Hinduja, Fernando Marmolejo-Ramos, Shaun Canavan, Liza Jivnani, Stanisław Saganowski
Format: Article
Language:English
Published: The Royal Society 2025-06-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/10.1098/rsos.241778
Tags: Add Tag
No Tags, Be the first to tag this record!