AAV-regulated Serpine2 overexpression promotes hair cell regeneration

Inner ear hair cell (HC) damage is irreversible in mammals, but it has been shown that supporting cells (SCs) have the potential to differentiate into HCs. Serpine2, a serine protease inhibitor, encodes protease nexin 1, and this has been suggested to be a factor that promotes HC regeneration. In th...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiuhan Sun, Fangzhi Tan, Xinlin Wang, Xingliang Gu, Xin Chen, Yicheng Lu, Nianci Li, Xiaoyun Qian, Yinyi Zhou, Ziyu Zhang, Man Wang, Liyan Zhang, Busheng Tong, Jieyu Qi, Renjie Chai
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Molecular Therapy: Nucleic Acids
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S216225312400283X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inner ear hair cell (HC) damage is irreversible in mammals, but it has been shown that supporting cells (SCs) have the potential to differentiate into HCs. Serpine2, a serine protease inhibitor, encodes protease nexin 1, and this has been suggested to be a factor that promotes HC regeneration. In this study, we overexpressed Serpine2 in inner ear SCs cultured in two- and three-dimensional systems using the adeno-associated virus-inner ear (AAV-ie) vector, which promoted organoid expansion and HC differentiation. Overexpression of Serpine2 in the mouse cochlea through the round window membrane (RWM) injection promoted SC proliferation and HC regeneration, and the regenerated HCs were found to be derived from Lgr5+ SCs. Regenerated HCs have electrophysiological properties that are similar to those of native HCs. Notably, Serpine2 overexpression promoted HC survival and restored hearing of neomycin-damaged mice. In conclusion, our findings indicate that Serpine2 overexpression promotes HC regeneration and suggests that the utilization of inner ear progenitor cells in combination with AAVs might be a promising therapeutic target for hearing restoration.
ISSN:2162-2531