Integrated Scheduling of Multi-Objective Job Shops and Material Handling Robots with Reinforcement Learning Guided Meta-Heuristics

This study investigates the integrated multi-objective scheduling problems of job shops and material handling robots (MHR) with minimising the maximum completion time (makespan), earliness or tardiness, and total energy consumption. The collaborative scheduling of MHR and machines can enhance effici...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhangying Xu, Qi Jia, Kaizhou Gao, Yaping Fu, Li Yin, Qiangqiang Sun
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/1/102
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the integrated multi-objective scheduling problems of job shops and material handling robots (MHR) with minimising the maximum completion time (makespan), earliness or tardiness, and total energy consumption. The collaborative scheduling of MHR and machines can enhance efficiency and reduce costs. First, a mathematical model is constructed to articulate the concerned problems. Second, three meta-heuristics, i.e., genetic algorithm (GA), differential evolution, and harmony search, are employed, and their variants with seven local search operators are devised to enhance solution quality. Then, reinforcement learning algorithms, i.e., Q-learning and state–action–reward–state–action (SARSA), are utilised to select suitable local search operators during iterations. Three reward setting strategies are designed for reinforcement learning algorithms. Finally, the proposed algorithms are examined by solving 82 benchmark instances. Based on the solutions and their analysis, we conclude that the proposed GA integrating SARSA with the first reward setting strategy is the most competitive one among 27 compared algorithms.
ISSN:2227-7390