Production and Digital Image Correlation Analysis of Titanium Foams with Different Pore Morphologies as a Bone-Substitute Material

Ti foams are mesoporous structured materials that are characterized by their high surface area and interconnected porosity with a huge potential for biomedical applications. In this study, we investigated the production of titanium foams with different pore morphologies as a bone-substitute material...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammed Shbeh, Elif Oner, Ammar Al-Rubaye, Russell Goodall
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2019/1670837
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ti foams are mesoporous structured materials that are characterized by their high surface area and interconnected porosity with a huge potential for biomedical applications. In this study, we investigated the production of titanium foams with different pore morphologies as a bone-substitute material via the addition of different amounts, shapes, and sizes of the space holder. Furthermore, we also carried out strain analysis using digital image correlation (DIC) in order to analyse the strain distribution across the porous samples. In addition, the nature of the relationship between the amount of the space holder added and final amount of porosity in the foams produced was also examined. The results demonstrated that the relationship between the space holder amount and porosity in the samples follows a complex one-phase exponential decay function in an increasing form. Our findings also suggest that the shape of the space holder does not play a significant role in dictating the porosity of the foams produced in the current study. However, the space holder’s shape does have a substantial role in dictating the mechanical properties of the foams produced, where Ti foams produced using a cubic or irregular space holder were found to have a lower yield stresses than those made with the spherical space holder.
ISSN:1687-8434
1687-8442