Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation
Multiple-pole soliton solutions to a semidiscrete modified Korteweg-de Vries equation are derived by virtue of the Riemann-Hilbert problem with higher-order zeros. A different symmetry condition is introduced to build the nonregular Riemann-Hilbert problem. The simplest multiple-pole soliton solutio...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2019/5468142 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832555944355037184 |
---|---|
author | Zhixing Xiao Kang Li Junyi Zhu |
author_facet | Zhixing Xiao Kang Li Junyi Zhu |
author_sort | Zhixing Xiao |
collection | DOAJ |
description | Multiple-pole soliton solutions to a semidiscrete modified Korteweg-de Vries equation are derived by virtue of the Riemann-Hilbert problem with higher-order zeros. A different symmetry condition is introduced to build the nonregular Riemann-Hilbert problem. The simplest multiple-pole soliton solution is presented. The dynamics of the solitons are studied. |
format | Article |
id | doaj-art-ae509a8094d24ea599da9211e9338f15 |
institution | Kabale University |
issn | 1687-9120 1687-9139 |
language | English |
publishDate | 2019-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in Mathematical Physics |
spelling | doaj-art-ae509a8094d24ea599da9211e9338f152025-02-03T05:46:49ZengWileyAdvances in Mathematical Physics1687-91201687-91392019-01-01201910.1155/2019/54681425468142Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries EquationZhixing Xiao0Kang Li1Junyi Zhu2The High School, Huanghe S&T College, Zhengzhou, Henan 450006, ChinaThe 79th Middle School, Zhengzhou, Henan 450000, ChinaSchool of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, ChinaMultiple-pole soliton solutions to a semidiscrete modified Korteweg-de Vries equation are derived by virtue of the Riemann-Hilbert problem with higher-order zeros. A different symmetry condition is introduced to build the nonregular Riemann-Hilbert problem. The simplest multiple-pole soliton solution is presented. The dynamics of the solitons are studied.http://dx.doi.org/10.1155/2019/5468142 |
spellingShingle | Zhixing Xiao Kang Li Junyi Zhu Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation Advances in Mathematical Physics |
title | Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation |
title_full | Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation |
title_fullStr | Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation |
title_full_unstemmed | Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation |
title_short | Multiple-Pole Solutions to a Semidiscrete Modified Korteweg-de Vries Equation |
title_sort | multiple pole solutions to a semidiscrete modified korteweg de vries equation |
url | http://dx.doi.org/10.1155/2019/5468142 |
work_keys_str_mv | AT zhixingxiao multiplepolesolutionstoasemidiscretemodifiedkortewegdevriesequation AT kangli multiplepolesolutionstoasemidiscretemodifiedkortewegdevriesequation AT junyizhu multiplepolesolutionstoasemidiscretemodifiedkortewegdevriesequation |