Interpretable machine learning for atomic scale magnetic anisotropy in quantum materials

Abstract The rising demand for digital storage and environmental concerns necessitate ultra-high-density, energy-efficient solutions. Atomic-scale magnets (ASMs) based on transition metal (TM) dimers on defective graphene exhibit promising magnetic anisotropy energy (MAE) values, providing a robust...

Full description

Saved in:
Bibliographic Details
Main Authors: Jan Navrátil, Rafał Topolnicki, Michal Otyepka, Piotr Błoński
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-025-01637-y
Tags: Add Tag
No Tags, Be the first to tag this record!