Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups $\mathit{BS}(1,n)$

We present a technique to lift some tilings of the discrete hyperbolic plane –tilings defined by a 1D substitution– into a zero entropy subshift of finite type (SFT) on non-abelian amenable groups $\mathit{BS}(1,n)$ for $n\ge 2$. For well chosen hyperbolic tilings, this SFT is also aperiodic and min...

Full description

Saved in:
Bibliographic Details
Main Authors: Aubrun, Nathalie, Schraudner, Michael
Format: Article
Language:English
Published: Académie des sciences 2024-05-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.571/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206257041014784
author Aubrun, Nathalie
Schraudner, Michael
author_facet Aubrun, Nathalie
Schraudner, Michael
author_sort Aubrun, Nathalie
collection DOAJ
description We present a technique to lift some tilings of the discrete hyperbolic plane –tilings defined by a 1D substitution– into a zero entropy subshift of finite type (SFT) on non-abelian amenable groups $\mathit{BS}(1,n)$ for $n\ge 2$. For well chosen hyperbolic tilings, this SFT is also aperiodic and minimal. As an application we construct a strongly aperiodic SFT on $\mathit{BS}(1,n)$ with a hierarchical structure, which is an analogue of Robinson’s construction on $\mathbb{Z}^2$ or Goodman–Strauss’s on $\mathbb{H}^2$.
format Article
id doaj-art-aa0bf4e877584e26a9076e986562ba61
institution Kabale University
issn 1778-3569
language English
publishDate 2024-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-aa0bf4e877584e26a9076e986562ba612025-02-07T11:21:12ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G555358010.5802/crmath.57110.5802/crmath.571Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups $\mathit{BS}(1,n)$Aubrun, Nathalie0https://orcid.org/0000-0002-2701-570XSchraudner, Michael1Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400, Orsay, FranceCentro de Modelamiento Matemático, Universidad de Chile, Av. Blanco Encalada 2120, Piso 7, Santiago de ChileWe present a technique to lift some tilings of the discrete hyperbolic plane –tilings defined by a 1D substitution– into a zero entropy subshift of finite type (SFT) on non-abelian amenable groups $\mathit{BS}(1,n)$ for $n\ge 2$. For well chosen hyperbolic tilings, this SFT is also aperiodic and minimal. As an application we construct a strongly aperiodic SFT on $\mathit{BS}(1,n)$ with a hierarchical structure, which is an analogue of Robinson’s construction on $\mathbb{Z}^2$ or Goodman–Strauss’s on $\mathbb{H}^2$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.571/
spellingShingle Aubrun, Nathalie
Schraudner, Michael
Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups $\mathit{BS}(1,n)$
Comptes Rendus. Mathématique
title Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups $\mathit{BS}(1,n)$
title_full Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups $\mathit{BS}(1,n)$
title_fullStr Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups $\mathit{BS}(1,n)$
title_full_unstemmed Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups $\mathit{BS}(1,n)$
title_short Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups $\mathit{BS}(1,n)$
title_sort tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on baumslag solitar groups mathit bs 1 n
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.571/
work_keys_str_mv AT aubrunnathalie tilingsofthehyperbolicplaneofsubstitutiveoriginassubshiftsoffinitetypeonbaumslagsolitargroupsmathitbs1n
AT schraudnermichael tilingsofthehyperbolicplaneofsubstitutiveoriginassubshiftsoffinitetypeonbaumslagsolitargroupsmathitbs1n