Theoretical Vibration Analysis on 600 Wh Energy Storage Flywheel Rotor—Active Magnetic Bearing System

This paper shows a theoretical vibration analysis regarding the controller’s parameters and the gyroscopic effect, based on a simplified rotordynamic model. Combined with 600 Wh energy storage flywheel rotor system mathematical model, the Campbell diagram of the rotor system was obtained by the calc...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing-na Liu, Zheng-yi Ren, Shan-wei Wu, Yin-long Tang
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:International Journal of Rotating Machinery
Online Access:http://dx.doi.org/10.1155/2013/512674
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper shows a theoretical vibration analysis regarding the controller’s parameters and the gyroscopic effect, based on a simplified rotordynamic model. Combined with 600 Wh energy storage flywheel rotor system mathematical model, the Campbell diagram of the rotor system was obtained by the calculation of the whirl frequency under different parameters of the controller in MATLAB to analyze the effect of the controller parameter on the whirl frequency and to limit the operating speed and acceleration or deceleration of the rotor. The result of the analysis can be used to set the support position of the rotor system, limit the ratio of transverse moment of inertia and the polar moment of inertia, and direct the flywheel prototype future design. The presented simplified rotordynamic model can also be applied to rotating machines.
ISSN:1023-621X
1542-3034