Comparative Analysis of Deep Learning Architectures for Macular Hole Segmentation in OCT Images: A Performance Evaluation of U-Net Variants

This study presents a comprehensive comparison of U-Net variants with different backbone architectures for Macular Hole (MH) segmentation in optical coherence tomography (OCT) images. We evaluated eleven architectures, including U-Net combined with InceptionNetV4, VGG16, VGG19, ResNet152, DenseNet12...

Full description

Saved in:
Bibliographic Details
Main Authors: H. M. S. S. Herath, S. L. P. Yasakethu, Nuwan Madusanka, Myunggi Yi, Byeong-Il Lee
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Journal of Imaging
Subjects:
Online Access:https://www.mdpi.com/2313-433X/11/2/53
Tags: Add Tag
No Tags, Be the first to tag this record!