Model-Informed Dose Optimization of Spironolactone in Neonates and Infants

<b>Background/Objectives</b>: Spironolactone (SP) has been used off-label in pediatrics since its approval, but its use is challenged by limited pharmacokinetic (PK) data in adults and especially in children. <b>Methods</b>: Physiologically based pharmacokinetic (PBPK) models...

Full description

Saved in:
Bibliographic Details
Main Authors: Amira Soliman, Leandro F. Pippa, Jana Lass, Stephanie Leroux, Valvanera Vozmediano, Natalia V. de Moraes
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Pharmaceuticals
Subjects:
Online Access:https://www.mdpi.com/1424-8247/18/3/355
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<b>Background/Objectives</b>: Spironolactone (SP) has been used off-label in pediatrics since its approval, but its use is challenged by limited pharmacokinetic (PK) data in adults and especially in children. <b>Methods</b>: Physiologically based pharmacokinetic (PBPK) models for SP and its active metabolites, canrenone (CAN) and 7α thio-methyl spironolactone (TMS), in adults were developed. These models aim to enhance understanding of SP’s PK and provide a basis for predicting PK and optimizing SP dosing in infants and neonates. Given SP’s complex metabolism, we assumed complete conversion to CAN and TMS by CES1 enzymes, fitting CES1-mediated metabolism to the parent-metabolite model using PK data. We incorporated ontogeny for CES1 and CYP3A4 and other age-related physiological changes into the model to anticipate PK in the pediatric population. <b>Results</b>: The PBPK models for SP, CAN, and TMS accurately captured the observed PK data in healthy adults across various dosing regimens, including the impact of food on drug exposure. The pediatric PBPK model was evaluated using PK data from infants and neonates. Simulations indicate that 2.5 mg/kg in 6-month to 2-year infants and 2 mg/kg in 1–6-months infants matched the total unbound systemic exposure equivalent to the standard recommended daily maintenance dose of 100 mg in adults for treating edema. <b>Conclusions</b>: The developed PBPK model provides valuable insights for dosing decisions and optimizing therapeutic outcomes, especially in populations where clinical studies are challenging.
ISSN:1424-8247