Time Series Anomaly Detection Using Transformer-Based GAN With Two-Step Masking
Time series anomaly detection is a task that determines whether an unseen signal is normal or abnormal, and it is a crucial function in various real-world applications. Typical approach is to learn normal data representation using generative models, like Generative Adversarial Network (GAN), to disc...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2023-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10164104/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|