Mechanism of OH*-Modified 4H-SiC Surface with Scratches Based on ReaxFF MD Simulation
OH* generated through plasma catalysis offers several advantages, including a long survival time, high modification efficiency, and environmental friendliness. Consequently, a plasma-assisted polishing technology has rapidly developed. Previous studies exploring the interaction mechanism between OH*...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Micromachines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-666X/16/2/184 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | OH* generated through plasma catalysis offers several advantages, including a long survival time, high modification efficiency, and environmental friendliness. Consequently, a plasma-assisted polishing technology has rapidly developed. Previous studies exploring the interaction mechanism between OH* and 4H-SiC have often assumed flat surfaces. However, in the surface modification experiments on 4H-SiC, the actual surface morphology was not flat but contained numerous scratches. Therefore, this study investigated the interaction mechanism of OH* on an uneven surface using reactive force field molecular dynamics (ReaxFF MD) simulations. The results show that in the low-speed OH* modification process, the adsorption effect leads to a thicker modified layer at higher locations than at lower locations. The resulting modified layer can be removed by soft abrasive mechanical polishing to achieve surface flatness, but there will be a modified layer on the surface, which needs to be modified and polished several times. In contrast, during high-speed OH* modification, high-speed particle bombardment causes more Si-O bonds to diffuse into the scratches, resulting in the formation of a flat bonding layer with surface planarization achieved after a single polishing step. The interaction mechanism of OH* with the uneven surface at different speeds, as obtained through ReaxFF MD, provides a theoretical foundation for subsequent polishing experiments. |
|---|---|
| ISSN: | 2072-666X |