Left- and Right-Shifted Fractional Legendre Functions with an Application for Fractional Differential Equations
Two new orthogonal functions named the left- and the right-shifted fractional-order Legendre polynomials (SFLPs) are proposed. Several useful formulas for the SFLPs are directly generalized from the classic Legendre polynomials. The left and right fractional differential expressions in Caputo sense...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2020/6036417 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two new orthogonal functions named the left- and the right-shifted fractional-order Legendre polynomials (SFLPs) are proposed. Several useful formulas for the SFLPs are directly generalized from the classic Legendre polynomials. The left and right fractional differential expressions in Caputo sense of the SFLPs are derived. As an application, it is effective for solving the fractional-order differential equations with the initial value problem by using the SFLP tau method. |
---|---|
ISSN: | 1687-9120 1687-9139 |