New Characterizations of Weights in Hardy and Opial Type Inequalities via Solvability of Dynamic Equations
In this paper, we prove that the solvability of dynamic equations of second order is sufficient for the validity of some Hardy and Opial type inequalities with two different weights on time scales. In particular, the results give new characterizations of two different weights in inequalities contain...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2019/6757080 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we prove that the solvability of dynamic equations of second order is sufficient for the validity of some Hardy and Opial type inequalities with two different weights on time scales. In particular, the results give new characterizations of two different weights in inequalities containing Hardy and Opial operators. The main contribution in this paper is the characterizations of weights in discrete inequalities that will be formulated from our results as special cases. |
---|---|
ISSN: | 1026-0226 1607-887X |