Daugavet centers are separably determined

A linear bounded operator $G$ acting from a~Banach space $X$ intoa~Banach space $Y$ is a~Daugavet center if every linear boundedrank-$1$ operator $Tcolon X o Y$ fulfills$|G+T|=|G|+|T|$. We prove that $G colon X o Y$is a~Daugavet center if and only if for every separable subspaces$X_1subset X$ and...

Full description

Saved in:
Bibliographic Details
Main Author: T. Ivashyna
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2013-10-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/texts/2013/40_1/66-70.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!