Estimates for Parameter Littlewood-Paley gκ⁎ Functions on Nonhomogeneous Metric Measure Spaces

Let (X,d,μ) be a metric measure space which satisfies the geometrically doubling measure and the upper doubling measure conditions. In this paper, the authors prove that, under the assumption that the kernel of Mκ⁎ satisfies a certain Hörmander-type condition, Mκ⁎,ρ is bounded from Lebesgue spaces L...

Full description

Saved in:
Bibliographic Details
Main Authors: Guanghui Lu, Shuangping Tao
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2016/9091478
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552311224795136
author Guanghui Lu
Shuangping Tao
author_facet Guanghui Lu
Shuangping Tao
author_sort Guanghui Lu
collection DOAJ
description Let (X,d,μ) be a metric measure space which satisfies the geometrically doubling measure and the upper doubling measure conditions. In this paper, the authors prove that, under the assumption that the kernel of Mκ⁎ satisfies a certain Hörmander-type condition, Mκ⁎,ρ is bounded from Lebesgue spaces Lp(μ) to Lebesgue spaces Lp(μ) for p≥2 and is bounded from L1(μ) into L1,∞(μ). As a corollary, Mκ⁎,ρ is bounded on Lp(μ) for 1<p<2. In addition, the authors also obtain that Mκ⁎,ρ is bounded from the atomic Hardy space H1(μ) into the Lebesgue space L1(μ).
format Article
id doaj-art-a0ac28608e824ed9a6772a68aa2968d4
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2016-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-a0ac28608e824ed9a6772a68aa2968d42025-02-03T05:59:05ZengWileyJournal of Function Spaces2314-88962314-88882016-01-01201610.1155/2016/90914789091478Estimates for Parameter Littlewood-Paley gκ⁎ Functions on Nonhomogeneous Metric Measure SpacesGuanghui Lu0Shuangping Tao1College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, ChinaCollege of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, ChinaLet (X,d,μ) be a metric measure space which satisfies the geometrically doubling measure and the upper doubling measure conditions. In this paper, the authors prove that, under the assumption that the kernel of Mκ⁎ satisfies a certain Hörmander-type condition, Mκ⁎,ρ is bounded from Lebesgue spaces Lp(μ) to Lebesgue spaces Lp(μ) for p≥2 and is bounded from L1(μ) into L1,∞(μ). As a corollary, Mκ⁎,ρ is bounded on Lp(μ) for 1<p<2. In addition, the authors also obtain that Mκ⁎,ρ is bounded from the atomic Hardy space H1(μ) into the Lebesgue space L1(μ).http://dx.doi.org/10.1155/2016/9091478
spellingShingle Guanghui Lu
Shuangping Tao
Estimates for Parameter Littlewood-Paley gκ⁎ Functions on Nonhomogeneous Metric Measure Spaces
Journal of Function Spaces
title Estimates for Parameter Littlewood-Paley gκ⁎ Functions on Nonhomogeneous Metric Measure Spaces
title_full Estimates for Parameter Littlewood-Paley gκ⁎ Functions on Nonhomogeneous Metric Measure Spaces
title_fullStr Estimates for Parameter Littlewood-Paley gκ⁎ Functions on Nonhomogeneous Metric Measure Spaces
title_full_unstemmed Estimates for Parameter Littlewood-Paley gκ⁎ Functions on Nonhomogeneous Metric Measure Spaces
title_short Estimates for Parameter Littlewood-Paley gκ⁎ Functions on Nonhomogeneous Metric Measure Spaces
title_sort estimates for parameter littlewood paley gκ functions on nonhomogeneous metric measure spaces
url http://dx.doi.org/10.1155/2016/9091478
work_keys_str_mv AT guanghuilu estimatesforparameterlittlewoodpaleygkfunctionsonnonhomogeneousmetricmeasurespaces
AT shuangpingtao estimatesforparameterlittlewoodpaleygkfunctionsonnonhomogeneousmetricmeasurespaces