Monitoring of Nutrients, Metabolites, IgG Titer, and Cell Densities in 10 L Bioreactors Using Raman Spectroscopy and PLS Regression Models

<b>Background:</b> Chinese hamster ovary (CHO) cell metabolism is complex, influenced by nutrients like glucose and glutamine and metabolites such as lactate. Real-time monitoring is necessary for optimizing culture conditions and ensuring consistent product quality. Raman spectroscopy h...

Full description

Saved in:
Bibliographic Details
Main Authors: Morandise Rubini, Julien Boyer, Jordane Poulain, Anaïs Berger, Thomas Saillard, Julien Louet, Martin Soucé, Sylvie Roussel, Sylvain Arnould, Murielle Vergès, Fabien Chauchard-Rios, Igor Chourpa
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Pharmaceutics
Subjects:
Online Access:https://www.mdpi.com/1999-4923/17/4/473
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849714260752465920
author Morandise Rubini
Julien Boyer
Jordane Poulain
Anaïs Berger
Thomas Saillard
Julien Louet
Martin Soucé
Sylvie Roussel
Sylvain Arnould
Murielle Vergès
Fabien Chauchard-Rios
Igor Chourpa
author_facet Morandise Rubini
Julien Boyer
Jordane Poulain
Anaïs Berger
Thomas Saillard
Julien Louet
Martin Soucé
Sylvie Roussel
Sylvain Arnould
Murielle Vergès
Fabien Chauchard-Rios
Igor Chourpa
author_sort Morandise Rubini
collection DOAJ
description <b>Background:</b> Chinese hamster ovary (CHO) cell metabolism is complex, influenced by nutrients like glucose and glutamine and metabolites such as lactate. Real-time monitoring is necessary for optimizing culture conditions and ensuring consistent product quality. Raman spectroscopy has emerged as a robust process analytical technology (PAT) tool due to its non-invasive, in situ capabilities. This study evaluates Raman spectroscopy for monitoring key metabolic parameters and IgG titer in CHO cell cultures. <b>Methods:</b> Raman spectroscopy was applied to five 10 L-scale CHO cell cultures. Partial least squares (PLS) regression models were developed from four batches, including one with induced cell death, to enhance robustness. The models were validated against blind test sets. <b>Results:</b> PLS models exhibited high predictive accuracy (R<sup>2</sup> > 0.9). Glucose and IgG titer predictions were reliable (RMSEP = 0.51 g/L and 0.12 g/L, respectively), while glutamine and lactate had higher RMSEP due to lower concentrations. Specific Raman bands contributed to the specificity of glucose, lactate, and IgG models. Predictions for viable (VCD) and total cell density (TCD) were less accurate due to the absence of direct Raman signals. <b>Conclusions:</b> This study confirms Raman spectroscopy’s potential for real-time, in situ bioprocess monitoring without manual sampling. Chemometric analysis enhances model robustness, supporting automated control systems. Raman data could enable continuous feedback regulation of critical nutrients like glucose, ensuring consistent critical quality attributes (CQAs) in biopharmaceutical production.
format Article
id doaj-art-a074e1e2423343cc80dc325285aa3500
institution DOAJ
issn 1999-4923
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Pharmaceutics
spelling doaj-art-a074e1e2423343cc80dc325285aa35002025-08-20T03:13:45ZengMDPI AGPharmaceutics1999-49232025-04-0117447310.3390/pharmaceutics17040473Monitoring of Nutrients, Metabolites, IgG Titer, and Cell Densities in 10 L Bioreactors Using Raman Spectroscopy and PLS Regression ModelsMorandise Rubini0Julien Boyer1Jordane Poulain2Anaïs Berger3Thomas Saillard4Julien Louet5Martin Soucé6Sylvie Roussel7Sylvain Arnould8Murielle Vergès9Fabien Chauchard-Rios10Igor Chourpa11Centre de Biophysique Moléculaire (UPR CNRS 4301), Département Nanomédicaments et Nanosondes, UFR de Pharmacie Philippe Maupas, Université de Tours, 31 avenue Monge, 37 000 Tours, FranceOndalys, 4 Rue Georges Besse, 34 830 Clapiers, FranceOndalys, 4 Rue Georges Besse, 34 830 Clapiers, FranceBioengineering, Bio-S, Technologie Servier, 905 Route de Saran, 45 520 Gidy, FranceBioengineering, Bio-S, Technologie Servier, 905 Route de Saran, 45 520 Gidy, FranceIndatech—Chauvin Arnoux Group, 4 Rue George Besse, 34 830 Clapiers, FranceCentre de Biophysique Moléculaire (UPR CNRS 4301), Département Nanomédicaments et Nanosondes, UFR de Pharmacie Philippe Maupas, Université de Tours, 31 avenue Monge, 37 000 Tours, FranceOndalys, 4 Rue Georges Besse, 34 830 Clapiers, FranceBioengineering, Bio-S, Technologie Servier, 905 Route de Saran, 45 520 Gidy, FranceBioengineering, Bio-S, Technologie Servier, 905 Route de Saran, 45 520 Gidy, FranceIndatech—Chauvin Arnoux Group, 4 Rue George Besse, 34 830 Clapiers, FranceCentre de Biophysique Moléculaire (UPR CNRS 4301), Département Nanomédicaments et Nanosondes, UFR de Pharmacie Philippe Maupas, Université de Tours, 31 avenue Monge, 37 000 Tours, France<b>Background:</b> Chinese hamster ovary (CHO) cell metabolism is complex, influenced by nutrients like glucose and glutamine and metabolites such as lactate. Real-time monitoring is necessary for optimizing culture conditions and ensuring consistent product quality. Raman spectroscopy has emerged as a robust process analytical technology (PAT) tool due to its non-invasive, in situ capabilities. This study evaluates Raman spectroscopy for monitoring key metabolic parameters and IgG titer in CHO cell cultures. <b>Methods:</b> Raman spectroscopy was applied to five 10 L-scale CHO cell cultures. Partial least squares (PLS) regression models were developed from four batches, including one with induced cell death, to enhance robustness. The models were validated against blind test sets. <b>Results:</b> PLS models exhibited high predictive accuracy (R<sup>2</sup> > 0.9). Glucose and IgG titer predictions were reliable (RMSEP = 0.51 g/L and 0.12 g/L, respectively), while glutamine and lactate had higher RMSEP due to lower concentrations. Specific Raman bands contributed to the specificity of glucose, lactate, and IgG models. Predictions for viable (VCD) and total cell density (TCD) were less accurate due to the absence of direct Raman signals. <b>Conclusions:</b> This study confirms Raman spectroscopy’s potential for real-time, in situ bioprocess monitoring without manual sampling. Chemometric analysis enhances model robustness, supporting automated control systems. Raman data could enable continuous feedback regulation of critical nutrients like glucose, ensuring consistent critical quality attributes (CQAs) in biopharmaceutical production.https://www.mdpi.com/1999-4923/17/4/473Raman spectroscopyprocess analytical technology (PAT)CHO cell culturebioprocess monitoringchemometric analysisIgG titer prediction
spellingShingle Morandise Rubini
Julien Boyer
Jordane Poulain
Anaïs Berger
Thomas Saillard
Julien Louet
Martin Soucé
Sylvie Roussel
Sylvain Arnould
Murielle Vergès
Fabien Chauchard-Rios
Igor Chourpa
Monitoring of Nutrients, Metabolites, IgG Titer, and Cell Densities in 10 L Bioreactors Using Raman Spectroscopy and PLS Regression Models
Pharmaceutics
Raman spectroscopy
process analytical technology (PAT)
CHO cell culture
bioprocess monitoring
chemometric analysis
IgG titer prediction
title Monitoring of Nutrients, Metabolites, IgG Titer, and Cell Densities in 10 L Bioreactors Using Raman Spectroscopy and PLS Regression Models
title_full Monitoring of Nutrients, Metabolites, IgG Titer, and Cell Densities in 10 L Bioreactors Using Raman Spectroscopy and PLS Regression Models
title_fullStr Monitoring of Nutrients, Metabolites, IgG Titer, and Cell Densities in 10 L Bioreactors Using Raman Spectroscopy and PLS Regression Models
title_full_unstemmed Monitoring of Nutrients, Metabolites, IgG Titer, and Cell Densities in 10 L Bioreactors Using Raman Spectroscopy and PLS Regression Models
title_short Monitoring of Nutrients, Metabolites, IgG Titer, and Cell Densities in 10 L Bioreactors Using Raman Spectroscopy and PLS Regression Models
title_sort monitoring of nutrients metabolites igg titer and cell densities in 10 l bioreactors using raman spectroscopy and pls regression models
topic Raman spectroscopy
process analytical technology (PAT)
CHO cell culture
bioprocess monitoring
chemometric analysis
IgG titer prediction
url https://www.mdpi.com/1999-4923/17/4/473
work_keys_str_mv AT morandiserubini monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels
AT julienboyer monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels
AT jordanepoulain monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels
AT anaisberger monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels
AT thomassaillard monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels
AT julienlouet monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels
AT martinsouce monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels
AT sylvieroussel monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels
AT sylvainarnould monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels
AT murielleverges monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels
AT fabienchauchardrios monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels
AT igorchourpa monitoringofnutrientsmetabolitesiggtiterandcelldensitiesin10lbioreactorsusingramanspectroscopyandplsregressionmodels