Automated sparse feature selection in high-dimensional proteomics data via 1-bit compressed sensing and K-Medoids clustering
Abstract Background High-dimensional proteomics data present significant challenges in biomarker discovery due to technical noise, feature redundancy, and multicollinearity. Current feature selection methods, including filter, wrapper, and embedded approaches, struggle with stability, sparsity, and...
Saved in:
| Main Authors: | FuDong Wen, Yue Su, Dan Liu, YuPeng Wang, MeiNa Liu |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-07-01
|
| Series: | BMC Bioinformatics |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s12859-025-06193-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
PROVINCIAL CLUSTERING BASED ON EDUCATION INDICATORS: K-MEDOIDS APPLICATION AND K-MEDOIDS OUTLIER HANDLING
by: Octavia Rahmawati, et al.
Published: (2024-05-01) -
IMPLEMENTATION OF K-MEDOIDS AND K-PROTOTYPES CLUSTERING FOR EARLY DETECTION OF HYPERTENSION DISEASE
by: Hardianti Hafid, et al.
Published: (2025-01-01) -
Implementasi K-Medoids Clustering Dalam Pengelompokkan Harga 8 Jenis Minyak Goreng
by: Fina Nasari, et al.
Published: (2023-12-01) -
K-Medoid Algorithm in Clustering Student Scholarship Applicants
by: Sofi Defiyanti, et al.
Published: (2017-05-01) -
Identifikasi Pola Tingkat Kesenjangan Ketuntasan Pendidikan Di Indonesia Dengan Menggunakan Metode K-Medoids Clustering
by: Antika Zahrotul Kamalia, et al.
Published: (2025-04-01)