Automated sparse feature selection in high-dimensional proteomics data via 1-bit compressed sensing and K-Medoids clustering
Abstract Background High-dimensional proteomics data present significant challenges in biomarker discovery due to technical noise, feature redundancy, and multicollinearity. Current feature selection methods, including filter, wrapper, and embedded approaches, struggle with stability, sparsity, and...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-07-01
|
| Series: | BMC Bioinformatics |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s12859-025-06193-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|