Bifurcation Analysis and Chaos Control in a Discrete-Time Predator-Prey System of Leslie Type with Simplified Holling Type IV Functional Response

The dynamic behavior of a discrete-time predator-prey system of Leslie type with simplified Holling type IV functional response is examined. We algebraically show that the system undergoes a bifurcation (flip or Neimark-Sacker) in the interior of R+2. Numerical simulations are presented not only to...

Full description

Saved in:
Bibliographic Details
Main Authors: S. M. Sohel Rana, Umme Kulsum
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2017/9705985
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dynamic behavior of a discrete-time predator-prey system of Leslie type with simplified Holling type IV functional response is examined. We algebraically show that the system undergoes a bifurcation (flip or Neimark-Sacker) in the interior of R+2. Numerical simulations are presented not only to validate analytical results but also to show chaotic behaviors which include bifurcations, phase portraits, period 2, 4, 6, 8, 10, and 20 orbits, invariant closed cycle, and attracting chaotic sets. Furthermore, we compute numerically maximum Lyapunov exponents and fractal dimension to justify the chaotic behaviors of the system. Finally, a strategy of feedback control is applied to stabilize chaos existing in the system.
ISSN:1026-0226
1607-887X