Discrete Maximum Principle and Energy Stability of the Compact Difference Scheme for Two-Dimensional Allen-Cahn Equation
The Allen-Cahn model is discussed mainly in the phase field simulation. The compact difference method will be used to numerically approximate the two-dimensional nonlinear Allen-Cahn equation with initial and boundary value conditions, and then, a fully discrete compact difference scheme with second...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2022/8522231 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Allen-Cahn model is discussed mainly in the phase field simulation. The compact difference method will be used to numerically approximate the two-dimensional nonlinear Allen-Cahn equation with initial and boundary value conditions, and then, a fully discrete compact difference scheme with second-order accuracy in time and fourth-order in space is established. And its numerical solution satisfies the discrete maximum principle under the constraints of reasonable space and time steps. On this basis, the energy stability of the scheme is investigated. Finally, numerical examples are given to illustrate the theoretical results. |
---|---|
ISSN: | 2314-8888 |