A note on nonfragmentability of Banach spaces

We use Kenderov-Moors characterization of fragmentability to show that if a compact Hausdorff space X with the tree-completeness property contains a disjoint sequences of clopen sets, then (C(X), weak) is not fragmented by any metric which is stronger than weak topology. In particular, C(X) does not...

Full description

Saved in:
Bibliographic Details
Main Author: S. Alireza Kamel Mirmostafaee
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171201005075
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We use Kenderov-Moors characterization of fragmentability to show that if a compact Hausdorff space X with the tree-completeness property contains a disjoint sequences of clopen sets, then (C(X), weak) is not fragmented by any metric which is stronger than weak topology. In particular, C(X) does not admit any equivalent locally uniformly convex renorming.
ISSN:0161-1712
1687-0425