Oxygen metabolism abnormalities and high-altitude cerebral edema

Hypobaric hypoxia is widely recognized as a prominent risk factor for high-altitude cerebral edema (HACE), which contributes to the exacerbation of multiple pathological mechanisms, including oxidative stress, mitochondrial dysfunction, disruption of blood−;brain barrier integrity, neuroinflammation...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhi Li, Jianping Zhang, Xiaoxia Zhang, Qiaoying Jin, Xingxing Zheng, Li Mo, Zejiao Da
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-03-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2025.1555910/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hypobaric hypoxia is widely recognized as a prominent risk factor for high-altitude cerebral edema (HACE), which contributes to the exacerbation of multiple pathological mechanisms, including oxidative stress, mitochondrial dysfunction, disruption of blood−;brain barrier integrity, neuroinflammation, and neuronal apoptosis. Among these mechanisms, abnormalities in oxygen metabolism, including hypoxia, oxidative stress, and mitochondrial dysfunction, play pivotal roles in the pathophysiology of HACE. In this review, our objective is to enhance our comprehension of the underlying molecular mechanisms implicated in HACE by investigating the potential involvement of oxygen metabolism. Addressing aberrations in oxygen metabolism holds promise for providing innovative therapeutic strategies for managing HACE.
ISSN:1664-3224