Dual characterization of the Dieudonne-Schwartz theorem on bounded sets
The Dieudonné-Schwartz Theorem on bounded sets in a strict inductive limit is investigated for non-strict inductive limits. Its validity is shown to be closely connected with the problem of whether the projective limit of the strong duals is a strong dual itself. A counter-example is given to show t...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1983-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171283000174 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Dieudonné-Schwartz Theorem on bounded sets in a strict inductive limit is investigated for non-strict inductive limits. Its validity is shown to be closely connected with the problem of whether the projective limit of the strong duals is a strong dual itself. A counter-example is given to show that the Dieudonné-Schwartz Theorem is not in general valid for an inductive limit of a sequence of reflexive, Fréchet spaces. |
---|---|
ISSN: | 0161-1712 1687-0425 |