Research on federated learning approach based on local differential privacy

As a type of collaborative machine learning framework, federated learning is capable of preserving private data from participants while training the data into useful models.Nevertheless, from a viewpoint of information theory, it is still vulnerable for a curious server to infer private information...

Full description

Saved in:
Bibliographic Details
Main Authors: Haiyan KANG, Yuanrui JI
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2022-10-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2022189/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a type of collaborative machine learning framework, federated learning is capable of preserving private data from participants while training the data into useful models.Nevertheless, from a viewpoint of information theory, it is still vulnerable for a curious server to infer private information from the shared models uploaded by participants.To solve the inference attack problem in federated learning training, a local differential privacy federated learning (LDP-FL) approach was proposed.Firstly, to ensure the federated model training process was protected from inference attacks, a local differential privacy mechanism was designed for transmission of parameters in federated learning.Secondly, a performance loss constraint mechanism for federated learning was proposed and designed to reduce the performance loss of local differential privacy federated model by optimizing the constraint range of the loss function.Finally, the effectiveness of proposed LDP-FL approach was verified by comparative experiments on MNIST and Fashion MNIST datasets.
ISSN:1000-436X