Harnessing machine learning for high-entropy alloy catalysis: a focus on adsorption energy prediction
Abstract High-entropy alloys (HEAs) have emerged as promising candidates for catalyst applications due to their inherent compositional, structural, and site-level diversities, which enable highly tunable catalytic properties. However, these complexities pose grand challenges for traditional “trial-a...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | npj Computational Materials |
| Online Access: | https://doi.org/10.1038/s41524-025-01579-5 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|