MoCoUTRL: a momentum contrastive framework for unsupervised text representation learning
This paper presents MoCoUTRL: a Momentum Contrastive Framework for Unsupervised Text Representation Learning. This model improves two aspects of recently popular contrastive learning algorithms in natural language processing (NLP). Firstly, MoCoUTRL employs multi-granularity semantic contrastive lea...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2023-12-01
|
| Series: | Connection Science |
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1080/09540091.2023.2221406 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|