The compound (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one alleviates neuroinflammation and cognitive impairment in a mouse model of Alzheimer’s disease

Previous studies have shown that the compound (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one (D30), a pyromeconic acid derivative, possesses antioxidant and anti-inflammatory properties, inhibits amyloid-β aggregation, and alleviates scopolamine-induced cognitive impairment, similar to the pha...

Full description

Saved in:
Bibliographic Details
Main Authors: Xueyan Liu, Wei Wu, Xuejuan Li, Chengyan Wang, Ke Chai, Fanru Yuan, Huijuan Zheng, Yuxing Yao, Chenlu Li, Zu-Cheng Ye, Daijun Zha
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2025-11-01
Series:Neural Regeneration Research
Subjects:
Online Access:https://journals.lww.com/10.4103/NRR.NRR-D-23-01890
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous studies have shown that the compound (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one (D30), a pyromeconic acid derivative, possesses antioxidant and anti-inflammatory properties, inhibits amyloid-β aggregation, and alleviates scopolamine-induced cognitive impairment, similar to the phase III clinical drug resveratrol. In this study, we established a mouse model of Alzheimer’s disease via intracerebroventricular injection of fibrillar amyloid-β to investigate the effect of D30 on fibrillar amyloid-β–induced neuropathology. Our results showed that D30 alleviated fibrillar amyloid-β–induced cognitive impairment, promoted fibrillar amyloid-β clearance from the hippocampus and cortex, suppressed oxidative stress, and inhibited activation of microglia and astrocytes. D30 also reversed the fibrillar amyloid-β–induced loss of dendritic spines and synaptic protein expression. Notably, we demonstrated that exogenous fibrillar amyloid-β introduced by intracerebroventricular injection greatly increased galectin-3 expression levels in the brain, and this increase was blocked by D30. Considering the role of D30 in clearing amyloid-β, inhibiting neuroinflammation, protecting synapses, and improving cognition, this study highlights the potential of galectin-3 as a promising treatment target for patients with Alzheimer’s disease.
ISSN:1673-5374
1876-7958