Estimating the distance Estrada index
Suppose $G$ is a simple graph on $n$ vertices. The $D$-eigenvalues$\mu_1,\mu_2,\cdots,\mu_n$ of $G$ are the eigenvalues of itsdistance matrix. The distance Estrada index of $G$ is defined as$DEE(G)=\sum_{i=1}^ne^{\mu_i}$. In this paper, we establish newlower and upper bounds for $DEE(G)$ in terms of...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2016-08-01
|
| Series: | Kuwait Journal of Science |
| Subjects: | |
| Online Access: | https://journalskuwait.org/kjs/index.php/KJS/article/view/894 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|