Enhancing UAV Object Detection in Low-Light Conditions with ELS-YOLO: A Lightweight Model Based on Improved YOLOv11

Drone-view object detection models operating under low-light conditions face several challenges, such as object scale variations, high image noise, and limited computational resources. Existing models often struggle to balance accuracy and lightweight architecture. This paper introduces ELS-YOLO, a...

Full description

Saved in:
Bibliographic Details
Main Authors: Tianhang Weng, Xiaopeng Niu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/14/4463
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drone-view object detection models operating under low-light conditions face several challenges, such as object scale variations, high image noise, and limited computational resources. Existing models often struggle to balance accuracy and lightweight architecture. This paper introduces ELS-YOLO, a lightweight object detection model tailored for low-light environments, built upon the YOLOv11s framework. ELS-YOLO features a re-parameterized backbone (ER-HGNetV2) with integrated Re-parameterized Convolution and Efficient Channel Attention mechanisms, a Lightweight Feature Selection Pyramid Network (LFSPN) for multi-scale object detection, and a Shared Convolution Separate Batch Normalization Head (SCSHead) to reduce computational complexity. Layer-Adaptive Magnitude-Based Pruning (LAMP) is employed to compress the model size. Experiments on the ExDark and DroneVehicle datasets demonstrate that ELS-YOLO achieves high detection accuracy with a compact model. Here, we show that ELS-YOLO attains a mAP@0.5 of 74.3% and 68.7% on the ExDark and DroneVehicle datasets, respectively, while maintaining real-time inference capability.
ISSN:1424-8220