Self-Supervised Learning Meets Custom Autoencoder Classifier: A Semi-Supervised Approach for Encrypted Traffic Anomaly Detection
The widespread adoption of encryption in computer networks has made detecting malicious traffic, especially at network perimeters, increasingly challenging. As packet contents are concealed, traditional monitoring techniques such as Deep Packet Inspection (DPI) become ineffective. Consequently, rese...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/11113262/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|