Active oversight and quality control in standard Bayesian optimization for autonomous experiments
Abstract The fusion of experimental automation and machine learning has catalyzed a new era in materials research, prominently featuring Gaussian Process (GP) Bayesian Optimization (BO) driven autonomous experiments. Here we introduce a Dual-GP approach that enhances traditional GPBO by adding a sec...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | npj Computational Materials |
Online Access: | https://doi.org/10.1038/s41524-024-01485-2 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|