A Note on Ergodicity of Systems with the Asymptotic Average Shadowing Property
We prove that if a continuous, Lyapunov stable map f from a compact metric space X into itself is topologically transitive and has the asymptotic average shadowing property, then X is consisting of one point. As an application, we prove that the identity map iX:X→X does not have the asymptotic avera...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2011-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2011/360583 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|