Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids

We illustrate a procedure based on the Magnus expansion for studying mechanical problems which lead to non-autonomous systems of linear ODE’s. The effectiveness of the Magnus method is enlighten by the analysis of a bifurcation problem in the framework of three-dimensional non-linear elasticity. In...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Castellano, P. Foti, A. Fraddosio, S. Marzano, M. D. Piccioni
Format: Article
Language:English
Published: Gruppo Italiano Frattura 2014-07-01
Series:Fracture and Structural Integrity
Subjects:
Online Access:https://www.fracturae.com/index.php/fis/article/view/1244
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841562321879564288
author A. Castellano
P. Foti
A. Fraddosio
S. Marzano
M. D. Piccioni
author_facet A. Castellano
P. Foti
A. Fraddosio
S. Marzano
M. D. Piccioni
author_sort A. Castellano
collection DOAJ
description We illustrate a procedure based on the Magnus expansion for studying mechanical problems which lead to non-autonomous systems of linear ODE’s. The effectiveness of the Magnus method is enlighten by the analysis of a bifurcation problem in the framework of three-dimensional non-linear elasticity. In particular, for an isotropic compressible elastic tube subject to an azimuthal shear primary deformation we study the possibility of axially periodic twist-like bifurcations. The approximate matricant of the resulting differential problem and the first singular value of the bifurcating load corresponding to a non-trivial bifurcation are determined by employing a simplified version of the Magnus method, characterized by a truncation of the Magnus series after the second term.
format Article
id doaj-art-8100296b6faf499db2c1c560afd727e9
institution Kabale University
issn 1971-8993
language English
publishDate 2014-07-01
publisher Gruppo Italiano Frattura
record_format Article
series Fracture and Structural Integrity
spelling doaj-art-8100296b6faf499db2c1c560afd727e92025-01-03T01:03:08ZengGruppo Italiano FratturaFracture and Structural Integrity1971-89932014-07-01829Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solidsA. Castellano0P. Foti1A. Fraddosio2S. Marzano3M. D. Piccioni4Politecnico di Bari – Dipartimento di Scienze dell’Ingegneria Civile e dell’ArchitetturaPolitecnico di Bari – Dipartimento di Scienze dell’Ingegneria Civile e dell’ArchitetturaPolitecnico di Bari – Dipartimento di Scienze dell’Ingegneria Civile e dell’ArchitetturaPolitecnico di Bari – Dipartimento di Scienze dell’Ingegneria Civile e dell’ArchitetturaPolitecnico di Bari – Dipartimento di Scienze dell’Ingegneria Civile e dell’ArchitetturaWe illustrate a procedure based on the Magnus expansion for studying mechanical problems which lead to non-autonomous systems of linear ODE’s. The effectiveness of the Magnus method is enlighten by the analysis of a bifurcation problem in the framework of three-dimensional non-linear elasticity. In particular, for an isotropic compressible elastic tube subject to an azimuthal shear primary deformation we study the possibility of axially periodic twist-like bifurcations. The approximate matricant of the resulting differential problem and the first singular value of the bifurcating load corresponding to a non-trivial bifurcation are determined by employing a simplified version of the Magnus method, characterized by a truncation of the Magnus series after the second term.https://www.fracturae.com/index.php/fis/article/view/1244Nonlinear elasticity
spellingShingle A. Castellano
P. Foti
A. Fraddosio
S. Marzano
M. D. Piccioni
Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids
Fracture and Structural Integrity
Nonlinear elasticity
title Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids
title_full Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids
title_fullStr Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids
title_full_unstemmed Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids
title_short Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids
title_sort geometric numerical integrators based on the magnus expansion in bifurcation problems for non linear elastic solids
topic Nonlinear elasticity
url https://www.fracturae.com/index.php/fis/article/view/1244
work_keys_str_mv AT acastellano geometricnumericalintegratorsbasedonthemagnusexpansioninbifurcationproblemsfornonlinearelasticsolids
AT pfoti geometricnumericalintegratorsbasedonthemagnusexpansioninbifurcationproblemsfornonlinearelasticsolids
AT afraddosio geometricnumericalintegratorsbasedonthemagnusexpansioninbifurcationproblemsfornonlinearelasticsolids
AT smarzano geometricnumericalintegratorsbasedonthemagnusexpansioninbifurcationproblemsfornonlinearelasticsolids
AT mdpiccioni geometricnumericalintegratorsbasedonthemagnusexpansioninbifurcationproblemsfornonlinearelasticsolids