Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids
We illustrate a procedure based on the Magnus expansion for studying mechanical problems which lead to non-autonomous systems of linear ODE’s. The effectiveness of the Magnus method is enlighten by the analysis of a bifurcation problem in the framework of three-dimensional non-linear elasticity. In...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Gruppo Italiano Frattura
2014-07-01
|
Series: | Fracture and Structural Integrity |
Subjects: | |
Online Access: | https://www.fracturae.com/index.php/fis/article/view/1244 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841562321879564288 |
---|---|
author | A. Castellano P. Foti A. Fraddosio S. Marzano M. D. Piccioni |
author_facet | A. Castellano P. Foti A. Fraddosio S. Marzano M. D. Piccioni |
author_sort | A. Castellano |
collection | DOAJ |
description | We illustrate a procedure based on the Magnus expansion for studying mechanical problems which lead to non-autonomous systems of linear ODE’s. The effectiveness of the Magnus method is enlighten by the analysis of a bifurcation problem in the framework of three-dimensional non-linear elasticity. In particular, for an isotropic compressible elastic tube subject to an azimuthal shear primary deformation we study the possibility of axially periodic twist-like bifurcations. The approximate matricant of the resulting differential problem and the first singular value of the bifurcating load corresponding to a non-trivial bifurcation are determined by employing a simplified version of the Magnus method, characterized by a truncation of the Magnus series after the second term. |
format | Article |
id | doaj-art-8100296b6faf499db2c1c560afd727e9 |
institution | Kabale University |
issn | 1971-8993 |
language | English |
publishDate | 2014-07-01 |
publisher | Gruppo Italiano Frattura |
record_format | Article |
series | Fracture and Structural Integrity |
spelling | doaj-art-8100296b6faf499db2c1c560afd727e92025-01-03T01:03:08ZengGruppo Italiano FratturaFracture and Structural Integrity1971-89932014-07-01829Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solidsA. Castellano0P. Foti1A. Fraddosio2S. Marzano3M. D. Piccioni4Politecnico di Bari – Dipartimento di Scienze dell’Ingegneria Civile e dell’ArchitetturaPolitecnico di Bari – Dipartimento di Scienze dell’Ingegneria Civile e dell’ArchitetturaPolitecnico di Bari – Dipartimento di Scienze dell’Ingegneria Civile e dell’ArchitetturaPolitecnico di Bari – Dipartimento di Scienze dell’Ingegneria Civile e dell’ArchitetturaPolitecnico di Bari – Dipartimento di Scienze dell’Ingegneria Civile e dell’ArchitetturaWe illustrate a procedure based on the Magnus expansion for studying mechanical problems which lead to non-autonomous systems of linear ODE’s. The effectiveness of the Magnus method is enlighten by the analysis of a bifurcation problem in the framework of three-dimensional non-linear elasticity. In particular, for an isotropic compressible elastic tube subject to an azimuthal shear primary deformation we study the possibility of axially periodic twist-like bifurcations. The approximate matricant of the resulting differential problem and the first singular value of the bifurcating load corresponding to a non-trivial bifurcation are determined by employing a simplified version of the Magnus method, characterized by a truncation of the Magnus series after the second term.https://www.fracturae.com/index.php/fis/article/view/1244Nonlinear elasticity |
spellingShingle | A. Castellano P. Foti A. Fraddosio S. Marzano M. D. Piccioni Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids Fracture and Structural Integrity Nonlinear elasticity |
title | Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids |
title_full | Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids |
title_fullStr | Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids |
title_full_unstemmed | Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids |
title_short | Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids |
title_sort | geometric numerical integrators based on the magnus expansion in bifurcation problems for non linear elastic solids |
topic | Nonlinear elasticity |
url | https://www.fracturae.com/index.php/fis/article/view/1244 |
work_keys_str_mv | AT acastellano geometricnumericalintegratorsbasedonthemagnusexpansioninbifurcationproblemsfornonlinearelasticsolids AT pfoti geometricnumericalintegratorsbasedonthemagnusexpansioninbifurcationproblemsfornonlinearelasticsolids AT afraddosio geometricnumericalintegratorsbasedonthemagnusexpansioninbifurcationproblemsfornonlinearelasticsolids AT smarzano geometricnumericalintegratorsbasedonthemagnusexpansioninbifurcationproblemsfornonlinearelasticsolids AT mdpiccioni geometricnumericalintegratorsbasedonthemagnusexpansioninbifurcationproblemsfornonlinearelasticsolids |