A shadow Markov equation

We introduce an analogue of the classical Markov equation that involves dual numbers $a+\alpha \varepsilon $ with $\varepsilon ^2=0$. This equation characterizes the “shadow Markov numbers” recently considered by one of us. We show that this equation is characterized by invariance by cluster algebra...

Full description

Saved in:
Bibliographic Details
Main Authors: Bonin, Nathan, Ovsienko, Valentin
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.496/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206241852391424
author Bonin, Nathan
Ovsienko, Valentin
author_facet Bonin, Nathan
Ovsienko, Valentin
author_sort Bonin, Nathan
collection DOAJ
description We introduce an analogue of the classical Markov equation that involves dual numbers $a+\alpha \varepsilon $ with $\varepsilon ^2=0$. This equation characterizes the “shadow Markov numbers” recently considered by one of us. We show that this equation is characterized by invariance by cluster algebra mutations.
format Article
id doaj-art-809d54dd228b4d56a1bc90bf4afeef65
institution Kabale University
issn 1778-3569
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-809d54dd228b4d56a1bc90bf4afeef652025-02-07T11:10:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G91483148910.5802/crmath.49610.5802/crmath.496A shadow Markov equationBonin, Nathan0Ovsienko, Valentin1Laboratoire de Mathématiques de Reims, UMR9008 CNRS, Université de Reims Champagne-Ardenne, U.F.R. Sciences Exactes et Naturelles, Moulin de la Housse - BP 1039, 51687 Reims cedex 2, FranceLaboratoire de Mathématiques de Reims, UMR9008 CNRS, Université de Reims Champagne-Ardenne, U.F.R. Sciences Exactes et Naturelles, Moulin de la Housse - BP 1039, 51687 Reims cedex 2, FranceWe introduce an analogue of the classical Markov equation that involves dual numbers $a+\alpha \varepsilon $ with $\varepsilon ^2=0$. This equation characterizes the “shadow Markov numbers” recently considered by one of us. We show that this equation is characterized by invariance by cluster algebra mutations.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.496/
spellingShingle Bonin, Nathan
Ovsienko, Valentin
A shadow Markov equation
Comptes Rendus. Mathématique
title A shadow Markov equation
title_full A shadow Markov equation
title_fullStr A shadow Markov equation
title_full_unstemmed A shadow Markov equation
title_short A shadow Markov equation
title_sort shadow markov equation
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.496/
work_keys_str_mv AT boninnathan ashadowmarkovequation
AT ovsienkovalentin ashadowmarkovequation
AT boninnathan shadowmarkovequation
AT ovsienkovalentin shadowmarkovequation