Dynamic Proportional Reinsurance and Approximations for Ruin Probabilities in the Two-Dimensional Compound Poisson Risk Model

We consider the dynamic proportional reinsurance in a two-dimensional compound Poisson risk model. The optimization in the sense of minimizing the ruin probability which is defined by the sum of subportfolio is being ruined. Via the Hamilton-Jacobi-Bellman approach we find a candidate for the optima...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan Li, Guoxin Liu
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2012/802518
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the dynamic proportional reinsurance in a two-dimensional compound Poisson risk model. The optimization in the sense of minimizing the ruin probability which is defined by the sum of subportfolio is being ruined. Via the Hamilton-Jacobi-Bellman approach we find a candidate for the optimal value function and prove the verification theorem. In addition, we obtain the Lundberg bounds and the Cramér-Lundberg approximation for the ruin probability and show that as the capital tends to infinity, the optimal strategies converge to the asymptotically optimal constant strategies. The asymptotic value can be found by maximizing the adjustment coefficient.
ISSN:1026-0226
1607-887X