Assessing the temporal transferability of machine learning models for predicting processing pea yield and quality using Sentinel-2 and ERA5-land data
Accurate pre-harvest prediction of yield and quality (tenderometric reading, TR) is crucial for the processing pea industry due to a narrow optimal harvest window. Machine learning (ML) models offer potential, but their real-world utility depends on their performance stability across different years...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-12-01
|
| Series: | Smart Agricultural Technology |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2772375525004381 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|