Enhancing Dense-Scene Millet Appearance Quality Inspection Based on YOLO11s with Overlap-Partitioning Strategy for Procurement
Accurate millet appearance quality assessment is critical for fair procurement pricing. Traditional manual inspection is time-consuming and subjective, necessitating an automated solution. This study proposes a machine-vision-based approach using deep learning for dense-scene millet detection and qu...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Agronomy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4395/15/6/1284 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|