Notes on Lipschitz Properties of Nonlinear Scalarization Functions with Applications
Various kinds of nonlinear scalarization functions play important roles in vector optimization. Among them, the one commonly known as the Gerstewitz function is good at scalarizing. In linear normed spaces, the globally Lipschitz property of such function is deduced via primal and dual spaces approa...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Abstract and Applied Analysis |
| Online Access: | http://dx.doi.org/10.1155/2014/792364 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|