Integrated Analysis of Volatile Metabolites in Rose Varieties: Effects of Cultivar Differences and Drying Temperatures on Flavor Profiles

Background: Rose processing faces critical challenges in preserving bioactive compounds and aroma profiles during thermal treatments, particularly given the growing demand for natural ingredients in the food and cosmetic industries. Methods: Using widely targeted metabolomics, we first characterized...

Full description

Saved in:
Bibliographic Details
Main Authors: Jun Zhang, Meile Sun, Xiangrong Ren, Jing Yang, Yijie Zhang, Jingtao Hui, Pengbing Li, Jianfei Tao, Tianzhi Liu, Guocang Lin
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Metabolites
Subjects:
Online Access:https://www.mdpi.com/2218-1989/15/5/325
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Rose processing faces critical challenges in preserving bioactive compounds and aroma profiles during thermal treatments, particularly given the growing demand for natural ingredients in the food and cosmetic industries. Methods: Using widely targeted metabolomics, we first characterized volatile profiles of four major commercial cultivars (Hetian, Damask, Bulgarian, and Fenghua; <i>n</i> = 6 replicates per cultivar), identifying terpenoids as dominant components (<i>p</i> < 0.05). Subsequent thermal optimization focused on Hetian rose, where WGCNA and K-means analyses revealed temperature-dependent dynamics (40–55 °C, triplicate drying trials per temperature). Results: Hetian rose exhibited significantly higher accumulation (<i>p</i> < 0.05) of a unique sesquiterpene marker, 4-(1,5-dimethyl-1,4-hexadienyl)-1-methyl-cyclohexene. Systematic drying optimization identified 50 °C as the thermal threshold for optimal color, bioactive retention, and sensory quality. Mechanistic analysis identified 193 temperature-responsive metabolites (VIP > 1, FC < 0.25 or >4, <i>p</i> < 0.01), with terpenoid biosynthesis (MVA/MEP pathways) and esterification dynamics emerging as critical control points. Conclusions: This study establishes the first cultivar-specific processing framework for roses, demonstrating that metabolic signature-guided drying improves product quality. The findings advance our understanding of thermal impacts on aroma biochemistry while providing actionable protocols for natural product industries.
ISSN:2218-1989