AZIM: Arabic-Centric Zero-Shot Inference for Multilingual Topic Modeling With Enhanced Performance on Summarized Text
Topic modeling is an unsupervised learning technique, that is extensively used for discovering latent topics in huge text corpora. However, existing models often fall short in cross-lingual scenarios, particularly for morphologically rich and low-resource languages such as Arabic. Cross-lingual topi...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/11058925/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|