Machine learning consensus clustering for inflammatory subtype analysis in stroke and its impact on mortality risk: a study based on NHANES (1999–2018)
BackgroundOur study aims to utilize unsupervised machine learning methods to perform inflammation clustering on stroke patients via novel CBC-derived inflammatory indicators (NLR, PLR, NPAR, SII, SIRI, and AISI), evaluate the mortality risk among these different clusters and construct prognostic mod...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-04-01
|
| Series: | Frontiers in Neurology |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fneur.2025.1562247/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|