Experimental investigation and thermodynamic modeling of the Zr-Y system

Based on the critical review of all the available experimental data in the literature, 8 key alloys were prepared by arc melting to investigate the phase equilibria in the Zr-Y system, These alloys, which were annealed at 5 different temperatures (800°C, 1000°C, 1100°C, 1120°C, 1160°C), were anal...

Full description

Saved in:
Bibliographic Details
Main Authors: Bu M.J., Wang P.S., Xu H.H., Liu S.H., Sha C.S., Du Y., Pan F.S., Tang A.T.
Format: Article
Language:English
Published: University of Belgrade, Technical Faculty, Bor 2010-01-01
Series:Journal of Mining and Metallurgy. Section B: Metallurgy
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/1450-5339/2010/1450-53391002181B.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the critical review of all the available experimental data in the literature, 8 key alloys were prepared by arc melting to investigate the phase equilibria in the Zr-Y system, These alloys, which were annealed at 5 different temperatures (800°C, 1000°C, 1100°C, 1120°C, 1160°C), were analyzed by means of X-ray diffraction, differential scanning calorimetry, optical microscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The results showed that a peritectoid reaction (βZr) + (αY) = (αZr) occurs at 886°C ± 5°C, and an eutectic reaction L = (βZr) + (αY) occurs at 1313°C ± 5°C. Taking into account the experimental data obtained both from this work and the literature, the Zr-Y system was thermodynamically modeled. The previously reported temperature for the peritectic reaction of (βY) + L = (αY) at about 1490 °C is supported by our thermodynamic calculation. Comparison between the calculated and measured phase diagrams shows that the thermodynamic calculation can well account for the experimental data.
ISSN:1450-5339