Association Analysis of the Genomic and Functional Characteristics of Halotolerant <i>Glutamicibacter endophyticus</i> J2-5-19 from the Rhizosphere of <i>Suaeda salsa</i>
Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this stud...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Microorganisms |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-2607/13/1/208 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as <i>Glutamicibacter endophyticus</i> J2-5-19. The strain was capable of growing in media with up to 13% NaCl and producing proteases, siderophores, and the plant hormone IAA. Under 4‰ salt stress, inoculation with strain J2-5-19 significantly increased the wheat seed germination rate from 37.5% to 95%, enhanced the dry weight of maize seedlings by 41.92%, and notably improved the development of maize root systems. Moreover, this work presented the first whole-genome of <i>Glutamicibacter endophyticus</i>, revealing that <i>G. endophyticus</i> J2-5-19 resisted salt stress by expelling sodium ions and taking up potassium ions through Na<sup>+</sup>/H<sup>+</sup> antiporters and potassium uptake proteins, while also accumulating compatible solutes such as betaine, proline, and trehalose. Additionally, the genome contained multiple key plant growth-promoting genes, including those involved in IAA biosynthesis, siderophore production, and GABA synthesis. The findings provide a theoretical foundation and microbial resources for the development of specialized microbial inoculants for saline-alkali soils. |
---|---|
ISSN: | 2076-2607 |