PI 3‐kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS

Abstract Peripheral nervous system (PNS) neurons support axon regeneration into adulthood, whereas central nervous system (CNS) neurons lose regenerative ability after development. To better understand this decline whilst aiming to improve regeneration, we focused on phosphoinositide 3‐kinase (PI3K)...

Full description

Saved in:
Bibliographic Details
Main Authors: Bart Nieuwenhuis, Amanda C Barber, Rachel S Evans, Craig S Pearson, Joachim Fuchs, Amy R MacQueen, Susan van Erp, Barbara Haenzi, Lianne A Hulshof, Andrew Osborne, Raquel Conceicao, Tasneem Z Khatib, Sarita S Deshpande, Joshua Cave, Charles Ffrench‐Constant, Patrice D Smith, Klaus Okkenhaug, Britta J Eickholt, Keith R Martin, James W Fawcett, Richard Eva
Format: Article
Language:English
Published: Springer Nature 2020-06-01
Series:EMBO Molecular Medicine
Subjects:
Online Access:https://doi.org/10.15252/emmm.201911674
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849332123403550720
author Bart Nieuwenhuis
Amanda C Barber
Rachel S Evans
Craig S Pearson
Joachim Fuchs
Amy R MacQueen
Susan van Erp
Barbara Haenzi
Lianne A Hulshof
Andrew Osborne
Raquel Conceicao
Tasneem Z Khatib
Sarita S Deshpande
Joshua Cave
Charles Ffrench‐Constant
Patrice D Smith
Klaus Okkenhaug
Britta J Eickholt
Keith R Martin
James W Fawcett
Richard Eva
author_facet Bart Nieuwenhuis
Amanda C Barber
Rachel S Evans
Craig S Pearson
Joachim Fuchs
Amy R MacQueen
Susan van Erp
Barbara Haenzi
Lianne A Hulshof
Andrew Osborne
Raquel Conceicao
Tasneem Z Khatib
Sarita S Deshpande
Joshua Cave
Charles Ffrench‐Constant
Patrice D Smith
Klaus Okkenhaug
Britta J Eickholt
Keith R Martin
James W Fawcett
Richard Eva
author_sort Bart Nieuwenhuis
collection DOAJ
description Abstract Peripheral nervous system (PNS) neurons support axon regeneration into adulthood, whereas central nervous system (CNS) neurons lose regenerative ability after development. To better understand this decline whilst aiming to improve regeneration, we focused on phosphoinositide 3‐kinase (PI3K) and its product phosphatidylinositol (3,4,5)‐trisphosphate (PIP3). We demonstrate that adult PNS neurons utilise two catalytic subunits of PI3K for axon regeneration: p110α and p110δ. However, in the CNS, axonal PIP3 decreases with development at the time when axon transport declines and regenerative competence is lost. Overexpressing p110α in CNS neurons had no effect; however, expression of p110δ restored axonal PIP3 and increased regenerative axon transport. p110δ expression enhanced CNS regeneration in both rat and human neurons and in transgenic mice, functioning in the same way as the hyperactivating H1047R mutation of p110α. Furthermore, viral delivery of p110δ promoted robust regeneration after optic nerve injury. These findings establish a deficit of axonal PIP3 as a key reason for intrinsic regeneration failure and demonstrate that native p110δ facilitates axon regeneration by functioning in a hyperactive fashion.
format Article
id doaj-art-774319b15576431a80d815b1901eaee3
institution Kabale University
issn 1757-4676
1757-4684
language English
publishDate 2020-06-01
publisher Springer Nature
record_format Article
series EMBO Molecular Medicine
spelling doaj-art-774319b15576431a80d815b1901eaee32025-08-20T03:46:19ZengSpringer NatureEMBO Molecular Medicine1757-46761757-46842020-06-0112812410.15252/emmm.201911674PI 3‐kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNSBart Nieuwenhuis0Amanda C Barber1Rachel S Evans2Craig S Pearson3Joachim Fuchs4Amy R MacQueen5Susan van Erp6Barbara Haenzi7Lianne A Hulshof8Andrew Osborne9Raquel Conceicao10Tasneem Z Khatib11Sarita S Deshpande12Joshua Cave13Charles Ffrench‐Constant14Patrice D Smith15Klaus Okkenhaug16Britta J Eickholt17Keith R Martin18James W Fawcett19Richard Eva20John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeInstitute of Biochemistry, Charité – Universitätsmedizin BerlinLaboratory of Lymphocyte Signalling and Development, Babraham InstituteMRC Centre for Regenerative Medicine, University of EdinburghJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeMRC Centre for Regenerative Medicine, University of EdinburghDepartment of Neuroscience, Carleton UniversityDepartment of Pathology, University of CambridgeInstitute of Biochemistry, Charité – Universitätsmedizin BerlinJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeJohn Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeAbstract Peripheral nervous system (PNS) neurons support axon regeneration into adulthood, whereas central nervous system (CNS) neurons lose regenerative ability after development. To better understand this decline whilst aiming to improve regeneration, we focused on phosphoinositide 3‐kinase (PI3K) and its product phosphatidylinositol (3,4,5)‐trisphosphate (PIP3). We demonstrate that adult PNS neurons utilise two catalytic subunits of PI3K for axon regeneration: p110α and p110δ. However, in the CNS, axonal PIP3 decreases with development at the time when axon transport declines and regenerative competence is lost. Overexpressing p110α in CNS neurons had no effect; however, expression of p110δ restored axonal PIP3 and increased regenerative axon transport. p110δ expression enhanced CNS regeneration in both rat and human neurons and in transgenic mice, functioning in the same way as the hyperactivating H1047R mutation of p110α. Furthermore, viral delivery of p110δ promoted robust regeneration after optic nerve injury. These findings establish a deficit of axonal PIP3 as a key reason for intrinsic regeneration failure and demonstrate that native p110δ facilitates axon regeneration by functioning in a hyperactive fashion.https://doi.org/10.15252/emmm.201911674axon transportCNS axon regenerationoptic nervep110 deltaphosphoinositide 3‐kinase
spellingShingle Bart Nieuwenhuis
Amanda C Barber
Rachel S Evans
Craig S Pearson
Joachim Fuchs
Amy R MacQueen
Susan van Erp
Barbara Haenzi
Lianne A Hulshof
Andrew Osborne
Raquel Conceicao
Tasneem Z Khatib
Sarita S Deshpande
Joshua Cave
Charles Ffrench‐Constant
Patrice D Smith
Klaus Okkenhaug
Britta J Eickholt
Keith R Martin
James W Fawcett
Richard Eva
PI 3‐kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS
EMBO Molecular Medicine
axon transport
CNS axon regeneration
optic nerve
p110 delta
phosphoinositide 3‐kinase
title PI 3‐kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS
title_full PI 3‐kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS
title_fullStr PI 3‐kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS
title_full_unstemmed PI 3‐kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS
title_short PI 3‐kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS
title_sort pi 3 kinase delta enhances axonal pip3 to support axon regeneration in the adult cns
topic axon transport
CNS axon regeneration
optic nerve
p110 delta
phosphoinositide 3‐kinase
url https://doi.org/10.15252/emmm.201911674
work_keys_str_mv AT bartnieuwenhuis pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT amandacbarber pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT rachelsevans pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT craigspearson pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT joachimfuchs pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT amyrmacqueen pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT susanvanerp pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT barbarahaenzi pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT lianneahulshof pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT andrewosborne pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT raquelconceicao pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT tasneemzkhatib pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT saritasdeshpande pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT joshuacave pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT charlesffrenchconstant pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT patricedsmith pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT klausokkenhaug pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT brittajeickholt pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT keithrmartin pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT jameswfawcett pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns
AT richardeva pi3kinasedeltaenhancesaxonalpip3tosupportaxonregenerationintheadultcns