Rapid cleavage of 6-[18F]fluoronicotinic acid prosthetic group governs BT12 glioblastoma xenograft uptake: implications for radiolabeling design of biomolecules

Abstract Background Peptides radiolabeled with fluorine-18 are frequently synthesized using prosthetic groups. Among them, activated esters of 6-[18F]fluoronicotinic acid ([18F]FNA) have been prepared and successfully employed for 18F-labeling of diverse biomolecules, including peptides. The utility...

Full description

Saved in:
Bibliographic Details
Main Authors: Pyry Dillemuth, Abiodun Ayo, Xiaoqing Zhuang, Petter Lövdahl, Heidi Liljenbäck, Salli Kärnä, Tatsiana Auchynnikava, Jonne Kunnas, Jesse Ponkamo, Maxwell W. G. Miner, Johan Rajander, Jessica M. Rosenholm, Anne Roivainen, Anu J. Airaksinen, Pirjo Laakkonen, Xiang-Guo Li
Format: Article
Language:English
Published: SpringerOpen 2025-07-01
Series:EJNMMI Radiopharmacy and Chemistry
Subjects:
Online Access:https://doi.org/10.1186/s41181-025-00368-1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849389060677697536
author Pyry Dillemuth
Abiodun Ayo
Xiaoqing Zhuang
Petter Lövdahl
Heidi Liljenbäck
Salli Kärnä
Tatsiana Auchynnikava
Jonne Kunnas
Jesse Ponkamo
Maxwell W. G. Miner
Johan Rajander
Jessica M. Rosenholm
Anne Roivainen
Anu J. Airaksinen
Pirjo Laakkonen
Xiang-Guo Li
author_facet Pyry Dillemuth
Abiodun Ayo
Xiaoqing Zhuang
Petter Lövdahl
Heidi Liljenbäck
Salli Kärnä
Tatsiana Auchynnikava
Jonne Kunnas
Jesse Ponkamo
Maxwell W. G. Miner
Johan Rajander
Jessica M. Rosenholm
Anne Roivainen
Anu J. Airaksinen
Pirjo Laakkonen
Xiang-Guo Li
author_sort Pyry Dillemuth
collection DOAJ
description Abstract Background Peptides radiolabeled with fluorine-18 are frequently synthesized using prosthetic groups. Among them, activated esters of 6-[18F]fluoronicotinic acid ([18F]FNA) have been prepared and successfully employed for 18F-labeling of diverse biomolecules, including peptides. The utility of [18F]FNA as a prosthetic compound has been demonstrated in both preclinical and clinical settings, including radiopharmaceuticals targeting prostate-specific membrane antigen and poly(ADP ribose) polymerase inhibitors. This study aims to evaluate a [18F]FNA-conjugated nonapeptide, [18F]FNA-N-CooP, for positron emission tomography imaging of intracranial BT12 glioblastoma xenografts in a mouse model. Additionally, this study highlights the importance of including control experiments with prosthetic compound alone when it constitutes a major radiometabolite. Results [18F]FNA-N-CooP successfully delineated intracranial glioblastoma xenografts yielding a standardized uptake value of 0.21 ± 0.03 (n = 4) and a tumor-to-brain ratio of 1.84 ± 0.29. Ex vivo autoradiography of tumor tissue showed a partial co-localization between radioactivity uptake and the target fatty acid binding protein 3 expression. However, in vivo instability of [18F]FNA-N-CooP was observed, with [18F]FNA identified as a major radiometabolite. Notably, control studies using [18F]FNA alone also visualized tumors, producing a standardized uptake value of 0.90 ± 0.10 (n = 4) and a tumor-to-brain ratio of 1.51 ± 0.08. Conclusions Both [18F]FNA-N-CooP and [18F]FNA enabled PET visualization of human glioblastoma in the mouse model. However, the prominent presence of [18F]FNA as radiometabolite complicates the interpretation of [18F]FNA-N-CooP PET data, suggesting that the observed radioactivity uptake may primarily originate from [18F]FNA and other radiometabolites. Enhancing peptide stability is essential for improving imaging specificity. This study underscores the critical need to assess the imaging contributions of prosthetic groups when they function as significant radiometabolites.
format Article
id doaj-art-75d7aeb5aa8b4904bafdb15d625b7b66
institution Kabale University
issn 2365-421X
language English
publishDate 2025-07-01
publisher SpringerOpen
record_format Article
series EJNMMI Radiopharmacy and Chemistry
spelling doaj-art-75d7aeb5aa8b4904bafdb15d625b7b662025-08-20T03:42:04ZengSpringerOpenEJNMMI Radiopharmacy and Chemistry2365-421X2025-07-0110111510.1186/s41181-025-00368-1Rapid cleavage of 6-[18F]fluoronicotinic acid prosthetic group governs BT12 glioblastoma xenograft uptake: implications for radiolabeling design of biomoleculesPyry Dillemuth0Abiodun Ayo1Xiaoqing Zhuang2Petter Lövdahl3Heidi Liljenbäck4Salli Kärnä5Tatsiana Auchynnikava6Jonne Kunnas7Jesse Ponkamo8Maxwell W. G. Miner9Johan Rajander10Jessica M. Rosenholm11Anne Roivainen12Anu J. Airaksinen13Pirjo Laakkonen14Xiang-Guo Li15Turku PET Centre, University of TurkuTranslational Cancer Medicine Research Program, Faculty of Medicine, University of HelsinkiTurku PET Centre, University of TurkuTurku PET Centre, University of TurkuTurku PET Centre, University of TurkuTurku PET Centre, University of TurkuTurku PET Centre, University of TurkuTurku PET Centre, University of TurkuTurku PET Centre, University of TurkuTurku PET Centre, University of TurkuTurku PET Centre, University of TurkuPharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi UniversityTurku PET Centre, University of TurkuTurku PET Centre, University of TurkuTranslational Cancer Medicine Research Program, Faculty of Medicine, University of HelsinkiTurku PET Centre, University of TurkuAbstract Background Peptides radiolabeled with fluorine-18 are frequently synthesized using prosthetic groups. Among them, activated esters of 6-[18F]fluoronicotinic acid ([18F]FNA) have been prepared and successfully employed for 18F-labeling of diverse biomolecules, including peptides. The utility of [18F]FNA as a prosthetic compound has been demonstrated in both preclinical and clinical settings, including radiopharmaceuticals targeting prostate-specific membrane antigen and poly(ADP ribose) polymerase inhibitors. This study aims to evaluate a [18F]FNA-conjugated nonapeptide, [18F]FNA-N-CooP, for positron emission tomography imaging of intracranial BT12 glioblastoma xenografts in a mouse model. Additionally, this study highlights the importance of including control experiments with prosthetic compound alone when it constitutes a major radiometabolite. Results [18F]FNA-N-CooP successfully delineated intracranial glioblastoma xenografts yielding a standardized uptake value of 0.21 ± 0.03 (n = 4) and a tumor-to-brain ratio of 1.84 ± 0.29. Ex vivo autoradiography of tumor tissue showed a partial co-localization between radioactivity uptake and the target fatty acid binding protein 3 expression. However, in vivo instability of [18F]FNA-N-CooP was observed, with [18F]FNA identified as a major radiometabolite. Notably, control studies using [18F]FNA alone also visualized tumors, producing a standardized uptake value of 0.90 ± 0.10 (n = 4) and a tumor-to-brain ratio of 1.51 ± 0.08. Conclusions Both [18F]FNA-N-CooP and [18F]FNA enabled PET visualization of human glioblastoma in the mouse model. However, the prominent presence of [18F]FNA as radiometabolite complicates the interpretation of [18F]FNA-N-CooP PET data, suggesting that the observed radioactivity uptake may primarily originate from [18F]FNA and other radiometabolites. Enhancing peptide stability is essential for improving imaging specificity. This study underscores the critical need to assess the imaging contributions of prosthetic groups when they function as significant radiometabolites.https://doi.org/10.1186/s41181-025-00368-1Fluorine-186-[18F]fluoronicotinic acidPeptide radiolabelingPETProsthetic group
spellingShingle Pyry Dillemuth
Abiodun Ayo
Xiaoqing Zhuang
Petter Lövdahl
Heidi Liljenbäck
Salli Kärnä
Tatsiana Auchynnikava
Jonne Kunnas
Jesse Ponkamo
Maxwell W. G. Miner
Johan Rajander
Jessica M. Rosenholm
Anne Roivainen
Anu J. Airaksinen
Pirjo Laakkonen
Xiang-Guo Li
Rapid cleavage of 6-[18F]fluoronicotinic acid prosthetic group governs BT12 glioblastoma xenograft uptake: implications for radiolabeling design of biomolecules
EJNMMI Radiopharmacy and Chemistry
Fluorine-18
6-[18F]fluoronicotinic acid
Peptide radiolabeling
PET
Prosthetic group
title Rapid cleavage of 6-[18F]fluoronicotinic acid prosthetic group governs BT12 glioblastoma xenograft uptake: implications for radiolabeling design of biomolecules
title_full Rapid cleavage of 6-[18F]fluoronicotinic acid prosthetic group governs BT12 glioblastoma xenograft uptake: implications for radiolabeling design of biomolecules
title_fullStr Rapid cleavage of 6-[18F]fluoronicotinic acid prosthetic group governs BT12 glioblastoma xenograft uptake: implications for radiolabeling design of biomolecules
title_full_unstemmed Rapid cleavage of 6-[18F]fluoronicotinic acid prosthetic group governs BT12 glioblastoma xenograft uptake: implications for radiolabeling design of biomolecules
title_short Rapid cleavage of 6-[18F]fluoronicotinic acid prosthetic group governs BT12 glioblastoma xenograft uptake: implications for radiolabeling design of biomolecules
title_sort rapid cleavage of 6 18f fluoronicotinic acid prosthetic group governs bt12 glioblastoma xenograft uptake implications for radiolabeling design of biomolecules
topic Fluorine-18
6-[18F]fluoronicotinic acid
Peptide radiolabeling
PET
Prosthetic group
url https://doi.org/10.1186/s41181-025-00368-1
work_keys_str_mv AT pyrydillemuth rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT abiodunayo rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT xiaoqingzhuang rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT petterlovdahl rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT heidililjenback rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT sallikarna rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT tatsianaauchynnikava rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT jonnekunnas rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT jesseponkamo rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT maxwellwgminer rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT johanrajander rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT jessicamrosenholm rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT anneroivainen rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT anujairaksinen rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT pirjolaakkonen rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules
AT xiangguoli rapidcleavageof618ffluoronicotinicacidprostheticgroupgovernsbt12glioblastomaxenograftuptakeimplicationsforradiolabelingdesignofbiomolecules